

AGENDA

11:00 - 11:05 AM

INTRODUCTION Yve Torrie, Director of Climate, Energy and Resilience, A Better City

11:05 - 11:30 AMREPORT SUMMARY - TECHNOLOGIES, BARRIERS, POLICY OPTIONS &
STRATEGIES, & KEY TAKEAWAYS

Jeremy Koo & Ajey Pandey, Cadmus

 11:30 – 11:45 AM
 CONSERVATION LAW FOUNDATION CASE STUDY: 62 SUMMER STREET,

 BOSTON
 Brad Campbell, President, Conservation Law Foundation

11:45 – 12:00 PM **AKELIUS CASE STUDY: CARSON TOWER, 1410 COLUMBIA RD, BOSTON** Eli Herman, Construction Manager, Akelius

12:00 – 12:25 PMFACILITATED Q&AJohn Cleveland, Executive Director, Boston Green Ribbon Commission

12:25 – 12:30 PM **CLOSING REMARKS**

Kate Dineen, Executive Vice President, A Better City

THERMAL ELECTRIFICATION OF LARGE BUILDINGS IN THE COMMONWEALTH

Ajey Pandey, Research Analyst, Cadmus Jeremy Koo, Associate, Cadmus Yve Torrie, Director of Climate, Energy & Resilience, A Better City

AGENDA

- Context for Thermal Electrification
- Overview of Technologies
- Barriers to Electrification
- Policy Options and Strategies

CONTEXT

- Reducing carbon emissions from buildings is vital to the Boston and Commonwealth meeting carbon reduction goals by 2050.
- Major strategy for large building decarbonization is transitioning heating, cooling, and hot water to non-fossil fuels
 - Through electrification powered by renewable energy

OVERVIEW OF TECHNOLOGIES

AIR SOURCE HEAT PUMPS (ASHP)	VARIABLE REFRIGERANT FLOW (VRF) HEAT PUMPS	GROUND SOURCE HEAT PUMPS (GSHP)
 Transfer heat from outdoor air to conditioned indoor space Can be ductless (mini-split) or ducted (central) Ductless systems can be certified as "cold climate" models by NEEP 	 Central high-capacity heat pump system with adjustable rate of heat transfer May have "heat recovery" feature allowing for simultaneous heating and cooling 	 Transfer heat from buried ground loop to conditioned indoor space Can use water or air distribution inside building Requires drilling to install ground loop

Creen Ribbon

AIR SOURCE HEAT PUMPS

- Best fit for low- and mid-rise multifamily buildings
- Approx. \$3,900+ per ton

BENEFITS	DRAWBACKS
 Individual systems allow for per-user control Flexible installation options Operating costs can be directly metered to occupants Can increase flood resiliency 	 Efficiency reduced by cold temperatures Individual systems may increase maintenance requirements Unit electric service upgrades may be required

VRF HEAT PUMPS

- Best fit for mixed-use, office, multifamily buildings
- Approx. \$8,300+ per ton

BENEFITS	DRAWBACKS
 No mechanical room required Heat recovery improves comfort and efficiency Multiple zones operate independently Can increase flood resiliency 	 Efficiency reduced by cold temperatures Increases demand charges in winter Requires replacing existing distribution systems High volume of refrigerants required

GROUND SOURCE HEAT PUMPS

- Best fit buildings with open space (e.g. parking lots)
- Approx. \$12,000+ per ton

 Highest-efficiency option for heating and cooling Reduced mechanical room requirements Low maintenance costs High ground loop lifetime Can increase flood resiliency 	 Requires space to drill boreholes for ground loop Installed cost typically higher than other heat pump options Distribution system modifications may be necessary in retrofit projects.

EMERGING TECHNOLOGIES

HYDROGEN	AIR-TO-WATER HEAT PUMPS	DISTRICT GEOTHERMAL
 Potential complementary technology to heat pumps Potential technology for combined heat & power systems Major technology gaps exist Infrastructure for hydrogen distribution not in Boston 	 Similar technology to ASHPs Limited availability in U.S. Limited compatibility with existing hydronic distribution 	 Potential to address many barriers to individual geothermal installations in urban context Financing and business model for third-party geothermal network is untested

BETTE CITY

BARRIERS

- Economics
- Policy and Regulatory
- Decision Making
- Awareness
- Technical and Building
- Workforce

ECONOMIC BARRIERS

- Electrification technologies often have higher upfront costs than conventional fossil fuel equipment
 - Especially in retrofit applications
- Electrification may lead to increased energy costs
 - Cooling savings may be achieved
 - High cost of electricity vs. low cost of fossil fuels may increase heating costs
- Incremental costs can be reduced for new construction and renovations

POLICY AND REGULATORY BARRIERS

- MA's new statewide energy efficiency targets allow fuel switching where cost-effective
- By existing metrics, switching from gas to electric faces challenges in achieving cost effectiveness, reducing incentive potential for thermal electrification
- Non-energy benefits of electrification are not valued enough in regulatory structures to compensate

DECISION MAKING BARRIERS

- Some building owners have goals that disincentivize electrification
- Leasing structures can also lead to split incentives between building owners and tenants

AWARENESS BARRIERS

- Building practitioners have low familiarity and experience with thermal electrification
- Building owners are often unaware thermal electrification is an option
- When an HVAC system breaks down, building managers typically seek likefor-like replacements

WORKFORCE BARRIERS

- HVAC contractors are less familiar with installation, maintenance, and incentives for thermal electrification
- Maintenance staff will need to be re-trained when switching to thermal electrification technologies

POLICY OPTIONS AND STRATEGIES

	FINANCIAL RISK Reduction strategies	INCENTIVES AND RATE Structures	CODES, STANDARDS, AND Mandates	OTHER POLICIES/STRATEGIES
POLICY AND Regulatory		х		
ECONOMICS	x	X	X	
DECISION MAKING	Х		Х	
AWARENESS	Х			
TECHNICAL AND Building				x
WORKFORCE				X

POLICY OPTIONS AND STRATEGIES

- Financial Risk Reduction:
 - Use advanced metering data to improve building performance data quality
 - Promote standardization of thermal electrification projects for lending, installation, quality control
 - Implement green leasing strategies, third-party ownership models for renewable thermal
 - Support green banks and beneficial financing for sustainability projects

POLICY OPTIONS AND STRATEGIES

- Incentives and Rate Structures:
 - Increase and streamline utility incentives for thermal electrification
 - Adjust utility rate structures for electricity and gas
- Codes, Standards, and Mandates:
 - Building codes and zoning reforms
 - Building energy and emissions performance strategies
 - Minimum renting standards for building performance
 - Natural gas restrictions
- Other Policies
 - Manufacturer partnerships
 - Workforce training

CASE STUDIES

- A GSHP project in an **existing historic** municipal building of 14,000 square feet with occupants relocated during construction
- A VRF project in an **existing commercial office** building of 22,000 square feet with occupants relocated during construction
- A VRF project in an **existing commercial office** building of 71,000 square feet over four floors with occupants present during construction.
- A VRF project in an **existing multifamily residential** building of 153 units with occupants present during partial construction and individual units converted when tenants allow contractors into their units or upon turnover
- A GSHP project in a newly constructed higher education building of 345,000 square feet over 19 stories

CASE STUDIES

TECHNOLOGY	BUILDING TYPE	SIZE	APPLICATION
GSHP	Historical Renovation	14,000 sf	Municipal
GSHP	New Construction	345,000 sf	Higher education
VRF	Phased Renovation	22,000 sf	Commercial office
VRF	Phased Renovation	153 units	Multifamily residential
VRF	Displacement Renovation	71,000 sf	Commercial office

CONCLUSION

- Thermal electrification technology is widely available and is being installed
- Installation can be technically feasible in select circumstances
 - End of life (EOL) replacement
 - Major renovation
 - New construction

CONCLUSION

- Electrification faces challenges, including:
 - High upfront costs
 - Policy and regulatory barriers to incentives and rebates
 - Split-incentive barriers between tenants and building owners
- Adoption is accelerating
 - Required scale of adoption for decarbonization will require more incentives, policies, and mandates

